数量 |
序号 |
说明 |
1 |
1 |
q 3-plane GR with double-oblique 2D and 3D prescription
q 三平面双斜位的两维三维定位
3-Plane Localizer allows the sequential acquisition of three orthogonal scan planes that are scanned in a single series with one scan prescription. 3-Plane Localizer uses a Fast Gradient Echo pulse sequence and can obtain the three planes in a single breath-hold. Acquiring a localizer series with all three orthogonal planes,eliminates the need to prescribe and scan three separate series. 3-Plane GR allows you to define slices and SAT bands while visualizing their exact locations on three different image planes simultaneously. This feature is facilitated by using one image (acquired from a 3-Plane or any localizer) from each plane in conjunction with another during graphic prescription. It allows you to graphically prescribe on any of the images from the localizing series. It also gives you the flexibility of manipulating slice location and placement on any one of the three images interactively, while observing the resultant changes in the prescription in the other two planes.
3-Plane GRx helps you achieve reductions in prescription time, as well as increase your prescription accuracy.
During 3-Plane GRx, you can:
• Use the List Select window to load localizer images into the viewports
• Create different slice groups (parallel, oblique, radial, 2D, 3D, Tracker, and SAT)
• Move, size, and rotate the prescription not only on the viewport in which you deposited the prescription, but also the other two viewports
• Increase or decrease the number of slices or slabs
• Operate on the different slice groups (edit, delete, rotate, or resize)
• View graphic slice locations and SAT bands together in all viewports
• View and edit some application parameters based on the prescription and pulse sequence you select
• Save a 3-Plane GRx prescription as protocol
3-Plane GRx is available with all scan planes. 3-Plane GRx allows you to prescribe the following types of prescriptions:
• Two-dimensional (2D)
Radial
Multi-group
SAT
• Three-dimensional (3D)
Tracker
Multi-slab
SAT
The 3-Plane GRx can be manipulated in either the 2D or 3D GRx mode and also in the SAT mode. 3-Plane GRx is viewable and editable in the SAT mode, and the SAT bands are viewable and editable in the GRx mode.
三平面定位可以用带有一个扫描定位的指令对三个直角扫描平面进行连续采集。三平面定位利用一个快速梯度回波脉冲序列可以在一次闭气的情况下得到三个平面图像。通过所有的三直角平面得到一个定位系列, 减少指令及扫描三个单独系列的需求。
三平面GRX在定义扫描层面和饱和带的同时,可以观察在他们三个不同影像平面上的准确位置。在图解指令的过程中,通过利用每一个平面上的一个图像(由三平面或任何定位获得)与另一个的联合来使这个特性更加容易。它可以用图解指示任何来自于定位系列的图像。在观察另两个平面的指令中的那些可以导致结果的变化的时候,它也能提供很大的弹性来熟练操作扫描层面的定位以及在这三个图像中选取任意一个交互放置。三平面GRX帮助你缩减定位时间以及提高定位的精确度。
在三平面GRX里,你可以:
n 通过目录选择窗口来将定位图像加载到视窗
n 创建不同组的扫描层面(平行,斜位,径相, 二维,三维,追踪以及饱和)
n 移动,依大小排列以及旋转定位不仅用于实施定位的那个视窗,同时也用于另外的两个视窗
n 提高或者降低扫描层面的数量或厚度
n 在不同组的扫描层面上进行操作(修改,删除,旋转或者是调整大小)
n 在所有视窗里同时观察图像层面的位置以及饱和带
n 在定位以及所选择的脉冲序列的基础上观察和修改一些应用程序的参数
n 将三平面GRX定位设定为固定格式
三平面GRX支持以下种类的定位:
n 两维 (2D)
n 径向的
n 多组
n 饱和带
n 三维 (3D)
n 追踪
n 多层块
n 饱和带
三平面GRX可以在二维GRX或者三维GRX模式下,也可以在饱和模式下熟练操作。三平面GRX在饱和模式下是可视和可修改的,并且饱和带在GRX模式下也是可视和可修改的。
q SILENT MR Spin Echo
q SILENT MR 自旋回波序列
- Multi-Echo Multi-Plane (MEMP)
- Variable Echo Multi-Plane (VEMP) Acquisition
- 1,2,or 4 Symmetrical Echoes or 2 Asymmetrical Echoes are Available
- Standard, Classics (Fat Suppression by Centering Frequency RF Attenuation on Water) or Continuous Slice Options are Available
Spin Echo images are generally less sensitive to magnetic field
inhomogeneties and paramagnetics than most other pulse sequences. This is due to the RF rephasing of protons. Less geometric blurring is seen on spin echo images than Fast Spin Echo (FSE) images, therefore producing sharper image edges. Spin Echo sequences are used to acquire images throughout the body. It is used for T1, T2 and PD contrast weighting. Use SE instead of GRE to decrease magnetic susceptibility effects, for example, when using in the vicinity of air-tissue or tissue-bone interfaces.
自旋回波采集:
-多回波多平面采集MEMP
-可变回波多层面采集VEMP
-1,2,或4对称回波或2个非对称回波
-标准射频中心选定脂肪及水抑制成像
比起很多其他的脉冲序列,自旋回波的图像总体来说对磁场均匀性和顺磁性的敏感程度比较低,这是由于质子的相位重聚所形成的。自旋回波图像相对于快速自旋回波图像来说更少出现几何式的模糊的情况,所以能显示出更明显的图像优势。自旋回波序列被用于获取全身图像。用自旋回波来取代梯度回波可以减少磁体易感性的影响,例如,用在临近空气组织的地方或骨组织的分界面。
q Inversion Recovery Acquisitions
q 翻转恢复采集
Inversion Recovery produces T1-weighted images with better contrast and more SNR. Inversion Recovery fat suppressed, or STIR (Short TI-Inversion Recovery) images have more consistent fat suppression than chemical saturation because IR is less sensitive to magnetic field inhomogeneties and off-center FOV effects.
反转恢复采集:
反转恢复序列能产成对比度更好和更高信噪比的T1加权像。反转恢复脂肪抑制,或者是STIR(短T1反转恢复)的图像比化学饱和有更均匀的脂肪抑制,对磁场不均匀以及偏中心扫描受影响的敏感度较低。
q Fast Spin Echo Acquisitions
q 快速自旋回波采集
FSE has new improvements made to the Fast Spin Echo- Excel (FSE-XL) family of pulse sequences. All FSE sequences now use the XL pulse. The system automatically converts the FSE protocols to FSE-XL scans. These new modifications improve image quality by increasing image contrast and image signal or by decreasing overall scan times.
Fast Spin Echo images are less sensitive to magnetic field inhomogeneities and paramagnetics. One effective way to help reduce edge blurring would be to use FSE-XL to minimize echo spacing. FSE-XL improves tissue contrast from the decreased variation in signal collected across the T2 decay curve as ESP is reduced.
The duration of the RF pulse application has been decreased with FSE-XL, which allows for shorter ESP. This has resulted in an increase of RF power to obtain the proper flip angles, which are calculated in the prescan program.When using FSE-XL with sequential oblique group acquisitions, concatenated SAT can be used for placing SAT pulses in the slice direction without the trade-off of cross talk because slice groups are acquired sequentially. Use FSE-XL in any area where FSE is normally used to obtain PD and T2 images in less time than it takes to acquire FSE images. Also to acquire dual bi-lateral planes simultaneously.
The Classic Imaging Technique with the FSE-XL pulse sequences can be used to potentially reduce image artifacts in the spine or pelvis.
快速自旋回波采集:
快速自旋回波脉冲序列家族有很多新的进展。现在所有的FSE序列都使用XL脉冲。系统自动的将FSE转换成FSE―XL扫描。这些新的改动通过提高图像的对比度和图像信号或者是通过减少全部的扫描时间来提高图像质量。FSE图像很少受到磁场均匀度和顺磁场的影响。一种降低边缘模糊的有效方法是运用FSE-XL来尽可能的减小回波间隔。通过采集沿着T2衰减曲线所减少的变量信号,FSE-XL可以在减少ESP的同时提高组织对比。在利用具有连续斜面组FSE-XL进行采集的时候,复合的饱和可以在没有交叉影响的情况下在扫描层面的问题上取代饱和脉冲, 这是因为扫描层组是连续获得的。现在可以在通常使用FSE的任何地方使用FSE-XL来以更短的时间得到PD和T2图像,也可以同时得到两个双侧平面的图像。具有FSE-XL脉冲序列的经典图像技术有可以被用来减少在脊柱和骨盆图像的伪影。
q Fast Recovery Fast Spin Echo (FRFSE),
q Fast Recovery Fast Spin Echo-XL
q 快速翻转快速自旋回波
q 快速翻转快速自旋回波-XL
(FRFSE-XL): The new sequence of choice for high-quality, high-speed, and high-contrast T2-weighted imaging in neurological, body, orthopedic and pediatric applications. Prescribe FRFSE rather than FSE, and you’ll be able to choose between shorter acquisition times or increased slice coverage.
FRFSE: 新的序列选择可以获得很高的图像质量,很快的扫描速度,很高的T2加权对比的图像在神经,体部,骨关节与儿科应用,描述FRFSE 较FSE更好的图像质量,选择该序列后可同时获得更短的扫描时间与更大的覆盖范围。
q Blurring Cancellation
q 去模糊伪影技术
There is a User Control Variable (CV), Blurring Cancellation, available with Fast Spin Echo-Excel (FSE-XL). This technique average signals and thus reduces ghosting artifacts. Use FSE-XL with Fast Spin Echo Optimized (FSEOPT) with Blurring Cancellation for breath-hold abdominal imaging when a dual acquisition is required. It uses a sequential slice ordering technique, which can result in fewer mis-registration problems that typically occur with interleaved slice ordering.
模糊伪影消除功能
在FSE-XL上有一个使用者可控制的功能来消除模糊。这种技术使得信号平稳并由此减少ghosting 伪影. 在需要一个双回波采集的时候,可以使用带有消除模糊的FSEOPT的FSE-XL来进行腹部的闭气扫描。它利用了一个连续的扫描层面排序技术,这种技术可以导致更少的错层漏层问题,而这种问题经常发生在交叉扫描层面的排序上。
q FLAIR
q 流体抑制翻转恢复
FLAIR images have an improved image contrast and more SNR than FSE images. It is also less sensitive to magnetic field inhomogeneities and off-center FOV effects. With FLAIR acquisition bright signal is suppressed from CSF on T2 weighted images. Structures adjacent to fluid filled structures become more apparent. FLAIR sequences are most commonly used for T2 neuro applications where nullification of the CSF signal.
流体抑制反转恢复
FLAIR的图像相比FSE的图像而言有更好的图像对比和更高的信噪比,并且对磁场均匀度和偏中心扫描的敏感程度较低。在FLAIR的帮助下,T2加权图像中脑脊液的高信号在被抑制了,因此能使临近液体的组织变得更加明显,所以在脑脊液信号无用的地方,FLAIR序列最常用于神经的T2应用。
q Gradient Echo sequences
q 梯度回波序列
Can produce T1, T2 and PD weighted images in shorter scan times. There are several GRE sequences that can be acquired, they are: 2D GRE sequential, 2D GRE non-sequential (MPGR) and 3D GRE. 2D Non-sequential Gradient Echo is also called MPGR, Multi-Plane Gradient Recalled. It uses a Multi-Planar data acquisition mode. The long TR times allow for multiple slice acquisitions and also through time, prevents the build up of residual transverse magnetization. Gradient Echo sequences are used to acquire quick localizers. It is used for T1, T2 and PD contrast weighting. When in need of a pulse sequence with increased sensitivity to paramagnetics such as iron deposits that occur with stroke, this sequence is often used. Also 3D GRE is used throughout the body, in areas that do not have a lot of motion, for thin contiguous imaging, with increased SNR.
梯度回波序列
GRE可以在很短的扫描时间内生成T1,T2和PD加权图像。多种GRE序列技术:二维连续梯度回波,二维不连续梯度回波(MPGR)以及三维梯度回波。二维不连续梯度回波也被称为MPGR。它运用了一个多平面的数据采集模型。长的TR时间可以采集多重扫描层面,并且在这个时间段里,防止残留的横向磁化。梯度回波序列被用来实现快速定位。它被用在T1,T2和PD对比加权。当需要一个对顺磁性敏感的脉冲序列诸如铁质沉积扫描的时候,这个序列就会经常被用到。同时,三维的梯度回波序列也被应用于整个体部的薄层连续临床成像,尤其是对于那些相对静止的部位,能增加信噪比。
q FGRE
q 快速梯度回波序列
The use of rewinder pulses in FGRE sequences generally enhance T2 weighting within images. Spoiler pulses are used in FSPGR sequences, and they help to enhance T1 weighting in FGRE images. Some suggested FGRE and FSPGR are quick localizers anywhere in the body for producing quick T1, T2 and PD images. FGRE and FSPGR increase sensitivity to paramagnetics, such as iron deposits. This is helpful when imaging strokes. Use multiphase with FGRE and/or FSPGR for dynamic contrast imaging or kinematic studies. Use SPECIAL to suppress competing signal from fat in musculoskeletal studies or contrast enhanced studies.
快速梯度回波序列
在FGRE的序列中,重绕脉冲的用处在于能增强图像中的T2权重。扰相脉冲被应用于FSPGR序列,并且它能在FGRE的图像里增强T1加权。FGRE和FSPGR作为快速定位,并且可以在身体的任何部位生成快速的T1,T2和PD图像。FGRE和FSPGR提高了对顺磁场的敏感度,例如,铁质沉积成像,这在中风的影像中非常有用。利用带有FGRE和/或FSPGR的多相位来实现动态的对比影像或者关节运动学研究。在肌与骨骼的研究或者对比增强的研究中,利用SPECIAL来抑制来自脂肪的干扰信号。
Standard 2D Sequential FGRE/SPGR:
-T1 and T2* Breath-hold abdomen and pelvis imaging.
-Contrast enhanced T1 abdomen and pelvis.
-Ultra-fast localizers
-Breath-hold cardiac/aortic arch imaging when used with FGR/FSPGR and gating (Fast-Card).
标准的二维连续快速梯度回波/扰相梯度回波:
-T1和T2*的憋气状况下的腹部和骨盆成像
-对比增强的T1腹部和骨盆
-超快速定位
-使用FGR/FSPGR的心脏/动脉弓闭气加门控成像
Multi-Phase FSPGR
Temporally resolved contrast perfusion studies.
Joint motion studies of the knee, TMJ and wrist.
Flexion/Extension studies of the cervical spine.
多项位的快速扰相梯度回波
快速的对比灌注研究
膝盖的关节运动研究,颞颌关节和腕关节
颈锥的屈/伸研究
IR/DE Prepared FGR
IR - to suppress signal from a selective tissue or organ such as the liver or spleen
DE(Driven Equilibrium Preparation) - to produce greater T2* contrast.
具有IR/DE的快速梯度回波
IR(反转恢复)-抑制来自特定的组织或器官(例如肝脏和脾)的信号
DE(平衡预备)-生成更明显的T2*对比
2D Multi-Planar FMPFGR/FMSPGR
To obtain multiple slice locations of the abdomen or pelvis in a single breath-hold.
Contrast enhanced T1 images of the abdomen and pelvis.
To improve SNR over sequential Fast sequences.
二维多平面的FMPFGR/FMSPGR
采集腹部或盆腔闭气的多层面位置扫描
腹部和盆腔的对比增强T1图像
提高连续快速序列的信噪比
3D FGRE/FSPGR
High resolution T1 or T2* joint and musculo-skeletal images when faster scan times are desired. Reformat into multiple planes to eliminate need for additional acquisitions. Breath-hold abdominal and breast imaging with or without SPECIAL. Multi-Phase contrast enhanced volume imaging. Use Slice ZIP or ZIPx2 or ZIPx4 to increase spatial resolution without increasing scan time.
三维FGRE/FSPGR
在更短的扫描时间的条件下采集高分辨率的T1或者T2*关节以及肌与骨骼的图像。以多平面的方式来减少额外采集的需求。在带有或不带有SPECIAL的情况下采集腹部和乳腺屏气图像。多平面对此增强的体积图像。在不增加扫描时间的前提下利用层面ZIP或ZIPx2或ZIPx4来增加空间分辨率.
q Time of Flight (TOF) MRA imaging
q 时飞法血管成像
TOF is based on conventional gradient echo scanning with Flow Compensation. This imaging technique relies primarily on flow-related enhancements to distinguish moving from stationary spins in creating MRI angiograms.TOF-SPGR uses RF spoiling to minimize residual transverse magnetization to optimize T1 weighting. TOF-GRE uses a non RF Spoiled gradient echo technique and increased T2* effects may be noted. Both PSDs can produce Reconstruction and MIP images: Magnitude, collapsed, and projection images can be generated.Reconstruction is done concurrent with the acquisition. 2D TOF completes data acquisition for one slice before moving on to subsequent slice locations. Images can be acquired using a TOF- SPGR or TOF-GRE sequence.The advantages of 2D TOF include:Sensitivity to slow flow or moderate flow
Minimal saturation effects at normal flow velocities
Speed
Slice direction SAT bands concatenates; that is they move along with the slices, even if a change is made to the SAT band thickness and/or spacing.
2D TOFX is a type-in Time of Flight pulse sequence with optimized SAT thickness and gap to improve background suppression.
2D TOF GRE or SPGR is used for:
Demonstrating the carotid bifurcation or venous anatomy
Evaluating suspected basilar artery occlusive disease
Imaging pelvic and lower extremity vasculature
Mapping cortical veins
Evaluating suspected intra-cranial venous thrombosis
时间飞跃法血管成像
TOF成像是建立在带有流动补偿的梯度回波扫描。这种成像技术主要依赖于流动增强效应来区别移动的及固定的质子,来形成磁共振血管造影图像。
TOF-SPGR利用射频扰相来使残留横向磁化最小并优化T1加权。TOF-GRE利用了非射频扰相的梯度回波技术,同时能达到增强T2*的效果。两种脉冲序列都能生成重建和最大密度投影图像:
可以生成各个方向投影的图像
图像的采集和重建同时进行
二维TOP在移至下一个扫描层面之前就完成了对这一个扫描层面的数据采集。图像可以用TOF- SPGR或者TOF-GRE序列采集。二维TOF的优势在于:
对慢速或中速的流动很敏感
在正常的流动速率下有最小的饱和效果
速度快
扫描层面位置的饱和带连接技术是指饱和带会随着扫描层面移动,而且饱和带厚度或者是间隔可以改变。
二维TOFX是一种具有最优化的饱和厚度和间隔的经典时飞法脉冲序列
§ 二维TOF GRE或者SPGR主要用于:
§ 显示颈动脉的分支或者静脉的剖面
§ 评估有争议的头动脉闭塞疾病
§ 盆腔以及更末梢的血管成像
§ 大脑静脉
§ 评估有争议的头内静脉血栓
q Fast Time of Flight (Fast TOF) technique
q 快速时飞法成像
Fast TOF relies primarily on flow-related enhancements to distinguish moving from stationary spins in creating MRI angiograms. Fast Time of Flight uses fractional echo, fractional RF and wider receive bandwidth to obtain shorter TR and TE than standard TOF. By using a fractional RF, this shortens the duration of the excitation pulse, along with the readout time, thus reducing the overall time required to play out the sequence.
快速时飞法成像
快速TOF技术依据流动增强效应来区别流动的及固定的质子以形成磁共振血管成像。快速TOF利用部分回波,部分射频以及更宽的接受带宽来得到比标准的TOF更短的TR和TE时间。通过利用部分射频,连同读出时间缩短了激励脉冲的持续时间,并以此来缩短脉冲序列所需要的全部时间。
q Gated 2DTOF
q 门控两维时飞法血管造影
Gated 2D TOF is a Fast GRE pulse sequence designed to reduce pulsatile flow artifact for peripheral MRA exams. This is achieved through the synchronization of data acquisition with the heart rate, and segmenting K-space within the cardiac cycle in a manner that optimizes image contrast (makes blood brighter).
Gated 2D TOF is used to:
Reduce artifacts due to pulsatile flow
Obtain aortic bifurcation and iliac images
Obtain popliteal artery images
Obtain carotid images and images of the origins of the carotids
门控两维时飞法采集
二维TOF门控是一个为减少运动的流动伪影而专门为外围MRA测试而设计的快速GRE脉冲序列。这是通过将心率的数据采集和分割同步化来实现的。心脏周期里的K空间分割法优化了图像对比(提高血液的亮度),用来:
减少因为脉动和流动而形成的伪影
采集动脉分支和髂血管的图像
采集腘部的动脉图像
采集颈动脉及其起源的图像
q Phase Contrast (PC) imaging
q 相位对比法采集
PC is a 2D and 3D imaging technique that relies on velocity-induced phase shifts to distinguish flowing blood from stationary tissues. With 2D PC, a variety of velocity encodings may be attempted in a short period of time. The resulting image provides a measure of average flow by minimizing ghosting artifacts. They can be acquired in both orthogonal and oblique planes. Oblique imaging is a technique in which coaxial planes are rotated about a specific axis and arranged explicitly or graphically.
相位对比法采集
PC图像是一种兼具二维和三维的图像技术,这种技术依赖于感应流速的相位变换并以此来区别流动的血液和固定的组织。通过二维的相位对比法可以在很短的时间内尝试很多种速率编码。得到的图像通过将ghosting伪影最小化来提供一个的平均流速的评估。它们可以同时由直角面和斜面获得。斜面成像是一种同轴平面绕着某一个具体的轴旋转和定位的技术。
q Fast Phase Contrast
q 快速相位对比法成像
Fast PC, also referred to as Fast 2DPC, adds the following new capabilities to the phase contrast pulse sequence:
Single slice multi-phase and multi-slice multi-phase capability
§ Shorter TR and TE values
§ Fast Cardiac Triggered data acquisition
§ Segments K-space for reduced motion artifact
§ Variable Receive Bandwidth Compatibility
§ Fast 2DPC is a combination of FastCard and Phase Contrast scanning. Fast Card produces multiple cardiac phases in a breath-hold time frame, while Phase Contrast provides quantitative data from a multi- phase cardiac acquisition.
快速相位对比法成像
快速相位对比法,特别是快速二维相位对比法会对相位对比法脉冲序列增加以下的新功能:
§ 多相位的单扫描层面和多相位的多扫描层面功能
§ 更短的TR,TE时间
§ 快速心脏触发数据的采集
§ 为减小运动伪影而所作的K空间分割
§ 多种接收带宽兼容
§ 快速二维相位对比法是快速心脏成像和相位对比法扫描的结合。快速心脏扫描可以生成多相位心脏闭气扫描,同时相位对比法可以提供来自多相位心脏采集的数据。
q 3D PC imaging
q 三维相位对比法成像
Provides the advantages of PC imaging plus the ability to acquire many thin slices, minimizing signal dropout from vessel overlap and magnetic susceptibility artifacts. 3D PC imaging is a volume 3D acquisition obtained through flow encoding and displayed as weighted-phase and magnitude images with collapsed image and multiple MIPs.
三维相位对比法成像
3D PC通过使血管重叠的信号中断和磁化率伪影最小化, 三维相位对比法成像具有普通相位对比法成像和采集多重薄层面能力加起来所具有的优势。三维相位对比法成像是一种通过流动编码所得到的以及通过各种投射影像和多种的MIPs的容积所显示的加权相位图像的大量三维采集。
q EPI
q 平面回波成像
Combined with SE or GRE, EPI is an imaging option primarily used to produce T2 or T2* weighted images. IR-EPI is used for T1 and STIR contrast weighting. Using the shortest possible echo spacing can reduce geometric distortion.
• Spin Echo Echo Planar Imaging (SE EPI)
• Gradient Echo Planar Imaging (GRE EPI)
• Inversion Recovery Echo Planar Imaging (IR EPI)
• Flair Echo Planar Imaging (Flair EPI)
• Diffusion Echo Planar Imaging (DW EPI)
EPI offers great flexibility when applications call for multiple shots and/or phases that need extremely short scan times and high temporal resolution. Possible EPI acquisitions include:
• Multi-shot single-slice
• Multi-shot multi-slice
• Multi-slice single-phase single shot
n Multi-slice single-phase multi-shot
n Applications include the following:
n To acquire very fast T2-weighted images when short scan time is imperative, e.g. to minimize breathing motion, or motion from patients that cannot hold still.
n Imaging pathologies that cause disruptions in the local magnetic field because they have a higher potential for contrast visualization with EPI sequences.
n Cardiac imaging for a single-slice multi-phase cardiac image without using gating. A single shot acquires images at a single location in just a few seconds.
n Single or multi-slice multi-phase using cardiac gating are taken within a single breath-hold.
Short TI Inversion Recovery is an EPI pulse sequence that in addition to nulling fat provides unique image contrast. urthermore, a spectral fat suppression technique that is unique to all GE EPI acquisitions is applied. It differs from the Fast IR (FMPIR) in that it uses an EPI data acquisition method that introduces more magnetic susceptibility effects into the image. It is typically used in both head and extremity imaging.
T1W Inversion Recovery: SE EPI with IR Prep can be used to obtain very fast T1 w images. These images have a fat suppression appearance due to the spectral fat suppression technique that is unique to all GE EPI acquisitions.
n Task activation uses GRE EPI with Multi-Phase
Imaging of the brain to produce cerebral-blood volume maps aid in diagnosis of recurrent tumor vs. edema in post therapy patients.
平面回波成像
平面回波成像联合自旋回波或者梯度回波,是一种主要用于生成T2或T2*加权图像的可选择的成像技术。反转恢复EPI是用来生成T1和STIR对比加权。通过利用最短的回波间隔来减小几何畸变。
自旋回波平面回波成像
梯度回波平面回波成像
• 反转恢复平面回波成像
• 流体抑制反转恢复平面回波成像
• 弥散平面回波成像
EPI能提供很大的弹性空间,满足那些需要多激发和/或时相,以及那些需要极短的扫描时间和高时间分辨率的采集
• 多激发单层面
• 多激发多层面
• 多层面单相单激发
• 多层面单相多激发
其应用包括:
• 在极短的时间内采集T2加权图像,例如,尽量减小呼吸的运动或病人的运动
• 能够对那些造成局部磁场破坏的病理进行扫描成像,这是因为它们更有可能用EPI序列表现对比观察。
• 在不使用门控的情况下,采集单层多相位的心脏扫描图像。几秒钟的时间里在一个位置上采集单次激发的图像。
• 在一次闭气的情况下,利用心电门控的单层或多层多相位成像。
短的TI的反转恢复是一个EPI的脉冲序列。除了抑制脂肪,它可以提供特别的图像对比。此外,它还应用了GE EPI采集序列所独有的频谱脂肪抑制。典型应用在头和肢体成像中。
T1反转恢复是指:带有反转恢复准备的自旋回波EPI序列可以用来采集快速的T1成像。由于频谱脂肪抑制技术是所有GE EPI采集序列所独有的,这些图像都有很好的脂肪抑制效果
n 功能成像利用了多项位的梯度回波EPI序列
n 脑血液容积成像图帮助肿瘤治疗后的病人鉴别水肿或再发。
Imaging Optimize
图像优化
Imaging optimize is used to control artifacts, enhance spatial resolution, alter contrast, improve signal-to-noise ratio, and minimize motion.
图像优化
图像优化用来控制伪影,提高空间分辨率,改变对比度,提高信噪比以及运动伪影最小化。
Optimize that Control Artifacts
优化图像控制伪影
Tailored RF:
TRF reduces the brightness of CSF and geometric blurring on PDW (Proton Density weighted) FSE sequences with:
• Less blurring
• Slightly less SNR
• Flatter contrast for T2s
• Slightly more slices per TR
Variable Bandwidth:
• Use VBw to increase SNR.
• Use VBw to decrease blurring in FSE and EPI protocols.
• Widen the RBw to decrease readout time (min TE and ES).
No Phase Wrap:
No Phase Wrap (NPW) prevents phase wraparound artifacts. Use NPW when the FOV selected in the phase direction is smaller than the anatomy being scanned. NPW can help to correct the problem.
优化图像控制伪影
优化射频TRF技术:
利用TRF来降低脑脊液的亮度和在质子密度加权快速自旋回波序列上的几何模糊:
• 减少模糊
• 稍少 SNR
• T2 对比更好
• 每个TR时间更多层数
可变带宽VBW技术
• 提高信噪比
• 减少FSE 和 EPI 的模糊伪影
• 宽带接收减少读出时间 (最小化 TE 和 ES)
去卷折伪影NPW技术
去相位卷折防止了相位围绕的伪影,在相位方向比被扫描的剖面小的时候可以利用去相位卷折帮助修正伪影问题。
q Optimize that Enhance Spatial Resolution
q 优化图像提高分辨率
Square Pixel
If the matrix is not balanced, it results in an asymmetrical FOV. Selecting square pixel results in resolution based on the selected frequency axis combined with a reduced phase matrix for a shorter scan time.
Matrix ZIP
In-plane spatial resolution Matrix Zerofill Interpolation Processing (ZIP) enhances existing resolution but does not create additional resolution.
• Use Matrix ZIP to better visualize the available in-plane resolution.
• Use Matrix ZIP to minimize the impact of decreasing acquisition matrix.
Slice ZIP
Through-plane spatial resolution Slice Zerofill Interpolation
Processing (ZIP) interpolates new slice locations in a 3D volume. This technique improves through-plane resolution by interpolating the acquired scan data to create new images. There are no penalties in scan time and SNR. Use slice ZIP to:
• Increase through-plane resolution.
• Smooth reformations or IVI projections.
• Reduce partial volume artifact due to the position of the anatomy within the slice.
• Reduce the number of acquired slices in a 3D volume and resulting scan time.
• Enhance Fast GRE 3D imaging for, breath-hold abdomenal, breast, and MRA imaging.
优化图像提高空间分辨率
正方象素
如果矩阵是不平衡的,就会出现不对称的FOV。选择正方象素能选择频率方向同时降低相位矩阵,从而提高分辨率同时扫描时间更短。
矩阵ZIP
平面内空间分辨率 ZIP 技术增强了现有的分辨率而不增加额外的分辨率
• 利用矩阵ZIP来更好的显示平面内的分辨率
• 利用矩阵ZIP来最小化采集矩阵减小的影响
层面 ZIP
层间空间分辨率 ZIP 技术在三维容积范围内插入新的层面计算。这种技术通过添加采集到的扫描数据提高了层间的分辨率并以此生成新的图像。并且对扫描时间和SNR都没有影响。
应用层间 ZIP :
• 提高层间分辨率
• 使重建或 IVI 投影更平滑
• 降低由于层面内的解剖定位造成的部分容积效应
• 降低三维容积内的扫描时间
• 在增强快速梯度回波序列三维成像中是为了腹部的闭气扫描,动态乳腺扫描和MRA扫描成像。
q Optimize that Enhance or Alter Contrast
q 优化图像增强或改变对比度
Classic
Classic is an option that can be used with a SE or any FSE-based pulse sequence and is very sensitive to center frequency adjustment. Classic minimizes the signal from the off-center frequency nuclei to increase the signal variations between muscle and fat. It also reduces the annefact for FSE sagittal spine imaging.Classic is effective on SE pulse sequences with long TEs.
• Use classic to produce images with a lower signal from fat in anatomy such as orbits or extremities.
• Use classic when looking for a larger variance between muscle and fat signal. Its effects can be emphasized via center frequency adjustment.
Classic is effective on FSE pulse sequences in homogeneous fields to reduce unwanted signal.
• Use classic for sagittal spine images with FOVs up to 28 cm to reduce annefact.
IR Prepared
• Use IR Prep to enhance T1 contrast.
• Use IR Prep to suppress signals from selective tissues.
DE Prepared
Driven Equilibrium Preparation
• Use DE Prep to enhance T2/T2* contrast.
优化图像增强或改变对比度
Classic 经典技术
Classic是一个可以和自旋回波或者任何一种以快速自旋回波序列为基础的脉冲序列同时使用的选项,并且它对中心频率调整非常的敏感。Classic最小化了来自偏离中心频率质子的信号,并以此来提高肌肉和脂肪之间的信号差别。同时它能够减少在快速自旋回波序列下矢状位脊柱成像的伪影。Classic对具有长的TE时间的自旋回波序列很有效果。
• 利用Classic来生成脂肪低信号的解剖图像,例如眼球或者肢体
• 当需要肌肉和脂肪的信号有很大的差别的时候,就可以利用Classic技术。它的效果可以通过中心频率调整得到加强。
在磁场均匀的范围内,Classic在快速自旋回波脉冲序列下非常有用并以此来减少不需要的信号。
• 利用classic来对扫描范围28cm的矢状位脊骨成像,并以此来减小伪影
反转恢复准备
• 增加 T1 对比
• 选择性地抑制组织信号
DE驱动均衡准备
• 用 DE 准备增强 T2/T2* 对比。
Optimize that Minimize the Effects of Motion
优化图像减小运动伪影
Flow Compensation
• Use FC to reduce the flow artifact from slow to moderate flow
• Use FC to improve the myelographic effect on T2W spines
• Use FC combined with SAT pulses that are perpendicular to the flow to produce a grey appearance in CSF at the superior edge of a sagittal FOV, or blood vessels.
Optimal suppression of motion artifacts
• Use FC combined with POMP to decrease motion artifacts.
Respiratory Compensation
• Use RC to reduce the effects of breathing motion when respiratory triggering or breath holding is not possible.
• Use the respiratory waveform without RC to observe the patient’s compliance with breathing instructions.
Respiratory Gating and Triggering
• Use RC to reduce the effects of breathing motion when respiratory triggering or breath holding is not possible.
• Use the respiratory waveform without RC to observe the patient’s compliance with breathing instructions.
Cardiac Compensation
Cardiac Compensation (CC) uses the cardiac cycle to sort the phase encoding data to minimize pulsatile ghosting. Use of CC can decrease flow artifact.
Cardiac Gating and Triggering
Cardiac and Peripheral Gating/Triggering allows the same data to be collected at the same points of the cardiac cycle for each repetition of the pulse sequence. The benefit is that the motion is always the same and is essentially "frozen" — flowing motion artifacts to be reduced or sometimes eliminated.
• Use cardiac gating during Cine-PC to examine flow.
• Use cardiac gating/triggering when imaging the heart for structure or function.
• Use cardiac gating/triggering when imaging in the thorax.
• Use peripheral gating during head or C/T spine imaging to minimize pulsatile motion of CSF on T2 or T2* scans.
优化图像减小运动伪影
流体补偿FC
• 用FC将慢速至中速的流动造成的伪影减小
• 用FC增强脊柱T2加权成像的脊髓效应
• 流体补偿结合脂肪饱和垂直与流动应用: 脑脊液在矢状位FOV或血管边缘呈灰白信号.
最佳的运动伪影抑制效果.
• 应用POMP结合FC减少运动伪影.
呼吸补偿RC
• 当呼吸触发和屏气不能实现时,用呼吸补偿减少呼吸运动的伪影.
• 呼吸不加补偿用于观察病人对呼吸训练的顺应性.
呼吸门控和触发
心电补偿CC
心电补偿应用选择周期相位编码数据以减少搏动,流动的伪影.
心脏门控和触发
应用心脏和外周门控及触发可使每一次脉冲序列重复时在心脏周期的同样时间点上采集相同的数据. 作用在于采集时的运动基本是相同的也就如同运动“冻结”的效果 — 流动运动的伪影就减少或消除了.
• 应用电影PC法结合心电门控检查血流.
• 应用心电门控/触发进行心脏结构和功能的成像.
• 应用心电门控/触发进行胸部成像.在头或颈胸椎成像中应用外周门控使T2成像的搏动伪影最小化。
q Optimize for Saturation Techniques
q 优化图像饱和技术
Spatial Saturation
Spatial saturation delivers RF pulses to a selected location inside or outside the FOV to saturate and eliminate unwanted signal from the nuclei.
• Use SAT bands outside the FOV to eliminate the signal from unwanted flow. Position the SAT band between the source of flow and the imaging volume.
• Use SAT bands inside the FOV to eliminate the signal from moving structures.
Chemical Saturation
Chemical saturation delivers RF pulses within the FOV at a specific frequency to saturate and eliminate unwanted signal from selected nuclei. Chemical saturation takes advantage of the fact that fat and water precess at different frequencies.
•Use chemical saturation to reduce the signal from competing tissue and to increase the conspicuity of pathology.
•To suppress fat in abdominal studies and thereby reduce anterior breathing artifacts.
• To suppress the fat in musculoskeletal tumors in contrast studies.
• To identify fatty infiltrate in livers.
• Use chemical saturation to reduce chemical shift artifacts.
• Use chemical saturation to identify fat or fatty structures by its low signal intensity.
SPECIAL
Spectral Inversion at Lipids (SPECIAL) uses an inversion pulse transmitted at the frequency of fat and timed to the null point of fat.
Magnetization Transfer
Magnetization Transfer (MT) improves contrast between blood flow and surrounding tissue by saturating tissues containing significant amounts of protein.
• Use MT to improve contrast between blood flow and surrounding tissue in 3D TOF imaging.
• Use MT with SE to reduce signal from tissues with high
protein content and increase the conspicuity of pathology or gadolinium enhanced structures.
Blood Suppression
Blood Suppression uses an inversion recovery preparation pulse to null signal from blood to obtain "black blood” cardiac images.
优化图像饱和技术
空间饱和
空间饱和是针对选定层面的层面内或层面外施加射频脉冲以饱和及消除无关的质子信号
• 应用扫描野外的饱和带消除不需要的血流信号,饱和带位于血流和成像部位之间.
• 应用扫描野内的饱和带去除运动组织的信号
化学饱和
化学饱和是在扫描野内施加特定频率的射频脉冲用于去除无关的质子信号。化学饱和是利用水和脂肪共振频率不同来进行的。
利用化学饱和能消除竞争性信号而突出病变
• 腹部的脂肪抑制可以去除前方的呼吸运动伪影
• 增强成像中抑制脂肪可突出关节肌肉的肿瘤
• 鉴别肝内的脂肪浸润
• 应用化学饱和去除化学位移伪影
• 应用化学饱和可识别脂肪或脂性结构的低信号
SPECIAL功能
Spectral Inversion at Lipids (SPECIAL) 特异性脂肪倒置应用反转恢复脉冲在脂肪零点信号的时间施加脂肪频率的脉冲
磁化转移对比
Magnetization Transfer (MT) 磁化转移对比提高了血流和周围组织间的对比,饱和了周围含大量蛋白成份的组织
• 在三维时飞法成像中应用MT可大大加强血管和周围组织的对比
• 在自旋回波成像中应用磁化转移对比降低蛋白成份组织的信号病变检出率和增强效果
血流抑制
血流抑制应用一个反转恢复的预准备脉冲使血液无信号从而获得心脏的黑血图像。
Additional Imaging Optimize
其它图像优化技术
Phase Offset MultiPlanar
Phase Offset Multi-Planar (POMP) doubles the slice coverage by exciting two slice locations at the same time. Multiple RF pulses are used to excite two adjacent slice locations at once, using a pulse combining two frequency bands that are out of phase with one another. Use POMP to increase the number of slice locations on short TR T1W sequences instead of increasing the TR and reducing contrast.
Full Echo Train
The full ET method completes all echo trains for effective TE1 before effective TE2 is initiated. Use a full echo train when more effective contrast weighting is desired on a dual echo acquisition.
Extended Dynamic Range
Extended Dynamic Range (EDR) is an imaging enhancement
technique that allows 64 bit data processing instead of the
conventional 32 bits to slightly improve SNR.
Sequential
Sequential is a data acquisition mode that collects one image at a time, in a numerical order.
• Use sequential during acquisitions to eliminate cross talk between slices.
• Use sequential for breath-hold abdominal or chest scans.
• Use sequential for quick localizer scans.
Multiphase
The Multi Phase imaging option allows imaging of the same slice locations or volume using the same imaging parameters
• Use Multi Phase for joint motion studies of the knee, TMJ, and wrist.
• Use Multi Phase for dynamic contrast studies.
Real-Time
Real-Time is a real-time interactive acquisition that can be used for navigating through patient anatomy for rapid visualization, monitoring temporal physiological events. Real-time interactive images can also be used for directly prescribing scan planes of other series in the exam.
其他图像优化技术
相位偏移多平面扫描POMP
POMP通过同时激发两个层面来加倍扫描层面的覆盖范围。多个射频脉冲利用联合两个互相反相位的频率带的一个脉冲可以一次激发两个相邻的层面。在不增加TR时间不降低降低对比度的情况下,利用POMP在短TR时间的T1加权序列中增加层面覆盖的数量。
全回波链技术
全回波链技术在有效TE2开始之前,能完成有效TE1所有的回波。当在双重回波采集中需要更多的有效对比加权的时候,可以利用全回波链技术。
扩展动态范围技术
扩展动态范围技术(EDR)是一种可以支持32位数据处理的图像增强技术,而有别于传统的32位只能微弱地提高信噪比。
连续采集技术
连续采集技术是一种在一定时间内以特定号数顺序采集图像的数据采集模式。
• 利用连续的采集方式可以减少层面间的互相影响。
• 利用连续采集进行腹部或胸腔的闭气扫描。
• 利用连续采集进行快速定位扫描。
多相位成像技术
多相位成像选择支持同一个层面或容积的成像利用同一个成像参数。
• 利用多相位成像技术进行膝盖,颞颌关节和手腕的关节运动研究
• 利用多相位成像技术进行动态增强对比的研究。
实时成像技术
实时成像技术是一个实时的交互采集功能,它可以贯串病人的解剖面进行导航,并以此来得到快速的成像和对当时的生理状况的监测。实时交互成像也可以用来对扫描中其他系列的扫描平面直接地发出指令。
Productivity Enhancements
加快扫描流通量
Intuitive scan control user interface
Efficient use of screens
Automated Table Motion and Automated Coil Switching
3 Plane Localizer for fast localizer series acquires images in all 3 orthogonal planes. User defines offset for shoulders, knees etc., as well as the number of images in each plane.
Flexible and intuitive graphic prescription
Integrated Signal to Noise Ratio Indicator
AutoView window remains visible even while doing graphic prescription
View/Edit Advisor alerts operator to incompatible dependencies requiring operator intervention, and suggests compatible alternatives
View/Edit Advisor interactively modifies parameter ranges automatically in response to operator-initiated changes
Anatomical Programmers provide quick and easy access to a large number of scan protocols. Each programmer groups protocols by anatomical regions.
Patient demographics and exam protocols can be preprogrammed in advance of patient arrival through the Schedule Patient feature.
JumpStart scanning works in conjunction with Schedule Patient to start scanning preprogrammed patients in just three steps: Select Patient, Download Protocol, Start Scan.
FastForward prescan allows operators to multi-task while pre-scanning, saving valuable time when the patient is inbore. Any subsequent series can be prescribed or edited (including via graphic prescription) without waiting for prescan to complete.
Subsequent series may be easily replicated and adjusted via a simple Copy/Paste Series feature. This dramatically reduces time spent replicating series for pre/post contrast studies or for minor pulse sequence modifications between series at the same anatomical location.
Virtual desktops organize work in logical groups without the complexity of freeform windows: ScanRx, MRWorks, Exchange, Director, Tools, Futures.
OneTouch filming allows the user to film an entire series, multi-image display or page with just one selection, available from both the screen and keyboard.
加快扫描流通量
灵活直观地扫描控制用户界面
多屏窗口的有效利用
自动的床体运动和线圈的自动转换
快速的三平面定位系列,采集所有的三个直角平面的图像。用户可以自己定义肩关节,膝关节等的偏中心扫描以及每一个平面的图像数量。
直观灵活的图解指令
统一的信噪比指示器
自动观看的视窗在进行图解指令的时候仍然是可视的
显示/编辑的功能提醒操作员注意一些不相容的的操作,并且建议兼容的选择。
显示/编辑的功能可以自动地以互动方式修改参数范围来响应操作者的改变
解剖分类-可以快速容易的得到大量的采集扫描程序。每一个程序组都是按照解剖区域分类的。
病患数量统计和扫描方案可以在病人到达之前通过病人时间安排预排好程序。
JumpStart扫描与Schedule Patient一起工作来开始对已经排好程序的病人进行三个步骤的扫描:选择病人,下载协议,开始扫描。
FastForward预先扫描允许操作员在病人准备和进入磁体的时候,同时做预先扫描等多项工作以节约时间。
随后的系列可能可以通过一个简单的复制/粘贴系列功能来简单的进行复制和调整。这样可以大幅度的减少那些花费在先/后对比度研究或者相同解剖位置系列之间的微小脉冲序列调整的时间。
虚拟桌面可以在没有任意视窗复杂性的情况下将工作分成不同的逻辑组别:ScanRx, MRWorks, Exchange, Director, Tools, Futures
OneTouch照相支持全系列成像,多图像显示或者单一挑选,而且从屏幕和键盘都能获得。
q Desktop Based User Interface
q 用户界面
The user interface can be configured in any of 6 different languages. Supported languages include English, French, German, Italian, Portuguese, and Spanish. The user interface utilizes the paradigm of managed work environments for a more intuitive clinical workflow. Virtually all clinical operations are managed through four virtual desktops or application managers: ScanRx, MRWorks, Director, Exchange. Operators can effortlessly move back and forth between these environments simply by clicking on an icon. An enhanced multi-tasking, simultaneous processing architecture maintains all processes so no work is lost or disrupted as desktops are switched.
Scan Rx
Provides comfortable, efficient set-up of patient studies. These tools include:
•Patient scheduling and data entry
•Protocol selection
•Protocol viewing
•Scan data acquisition
•Image reconstruction
•Dual AutoView image display layouts
Director
The Director desktop provides simple to use:
•Patient scheduling
•Patient data entry
•Preprogrammed patient demographics
•Protocol selection tools.
•Download from HIS/RIS directly to Signa System is available with the ConnectPro Plus
MRWorks
Is based on a modified version of the Advantage Windows workstation software designed to take advantage of the Signa MR system workstation computer and image processor. MR Works standard features include:
•Image display, processing and manual filming features
•MPR and MPVR – multiprojection volume rendering
•3D surface rendering
•Image add/subtract tool, edit patient data, CT image display
Exchange
The Exchange desktop provides a gateway for DICOM 3.0 and AdvantageNet (GE proprietary) image transactions, either through a local area network or via DICOM-formatted MOD media.
Service Tools
The Service Tools Desktop provides access to MR system calibration, configuration and diagnostics tools. All maintenance actions required by Signa are performed from this desktop.
Futures
The GE Desktop is the gateway to customer productivity with options such as GE Medical Systems:
•iCenter, ScanPath, iLinq
•IntelliMotion, SYNERGE
•Vitality Services
•GE CHOICE
•CompreCare
•Biomedical Services
•EFlexTrial
桌面电脑为基础的用户界面
用户界面支持包括英语,法语,德语,意大利语,葡萄牙语和西班牙语的六种语言。用户界面利用已经控制好的工作环境范例来营造一个更加直观的临床工作流。所有的虚拟临床操作都通过四个虚拟桌面或应用管理器来进行管理:ScanRx, MRWorks, Director, Exchange。操作器只用按一个图标就可以非常容易的在这些环境中前进或后退。一个增强多任务的同步处理体系维持了所有的过程以至于在桌面转换的过程中不会丢失或者损坏数据。
Scan Rx
提供舒适的,有效率的病患研究的启动工具。这些工具包括:
•病患安排和数据录入
•程序选择
•程序观看
•扫描数据采集
•图像重建
•双重自动观看图像显示设计
Director
桌面提供简单的:
•病患安排
•病患数据录入
•预排程序的病患人数统计
•程序选择工具
•可以通过ConnectPro Plus直接从HIS/RIS下载到Signa系统
MRWorks
以新版高级视窗为基础的工作站是为了利用Signa系统工作站电脑和图像处理器而设计的。MR主机工作站的标准功能包括:
•图像显示,处理和手动图像功能
•MPR and MPVR多平面重建和多平面容积重建
•三维表面容积重建
•图像增/减工具,编辑病人数据,CT图像显示
Exchange
Excharge桌面为DICOM 3.0和AdvantageNet的图像处理提供一个途径,或者通过一个本地区的网络或者通过DICOM格式的MOD媒介。
Service Tools
服务工具桌面提供MR系统标准,配置以及诊断工具。所有Signa需要的常规维护都可以从这个桌面上得到。
Futures
GE桌面是客户生产力选项的一个选择,例如GE医疗系统:
•iCenter, ScanPath, iLinq
•IntelliMotion, SYNERGE
•Vitality Services
•GE CHOICE
•CompreCare
•Biomedical Services
•EFlexTrial
Display:
显示:
AutoView Specifications
256 x 256 Image Window (standard)
512 x 512 Image Window (maximized)
Window/Level (W/L) Features
7 user-programmable keys on the scan control keyboard plus one key for returning to prior setting
6 user-programmable buttons in the image viewer
Arrow keys on the scan control keyboard
On-image through middle mouse button
Save State stores user-selected image orientation and window level with each dataset.
Image Display Features
Zoom / Roam / Flip / Rotate / Scroll
Explicit Magnify & Magnifying Glass
Image Measurement Tools (Measure Distance, ROI, Measure Angle, Measure Pixel Intensity)
Grid On / Off
Cross Reference \ User Annotation
Exam / Series Page
Hide Graphics \ Erase Annotation \ Screen Save
Accelerator Command Bar
Compare Mode \ Reference Image \ Image Enhance
ClariView Image Filtering
Smooth and Sharpen Edge Filters
Minified Reference Scoutview
Grayscale Stretch
Cine Paging (up to 4 windows and 128 images/window)
Add/Subtract \ Edit Patient Data
Image Display
256 Image buffer (256 x 256) at 30fps
Image Annotation Features
Shadowed to permit ease in reading
Two Graphic/Text planes overlay the entire screen
Grid placement with anatomical reference on an image
Drawing and annotation may be added to and removed from images
显示:
自动显示参数
256 x 256 矩阵图像视窗(标准)
512 x 512 矩阵图像视窗 (最大)
窗宽/窗位(W/L)特点
扫描控制键盘上7个用户可预编的键以及一个恢复预先设置的键
图像显示器上6个用户可预编的图标
扫描控制键盘上的箭头键
鼠标中键的On-image功能
用户可选择的存储功能可保存每个扫描的方位和图像窗
图像显示特点
放大 / 漫游 / 反转 / 旋转 / 卷折
清晰放大和放大镜功能
图像测量工具 (距离, 感兴趣区, 角度, 信号强度)
栅格开 / 关
对比参照 \ 用户注解
扫描 / 序列页
隐藏图形\消除注解\屏幕保存
加速器命令图标
对比模式\参考图像\图像增强
ClariView 图像滤波
光滑和增强边缘过滤
缩小参考监视视窗
灰阶延伸
电影分页(提高至4个视窗和128图像/每个窗框)
增/减\编辑病人数据
图像显示
30fps 的256 图像缓冲器 (256 x 256矩阵)
图像注解特点
加阴影易于识别
两个图解/文本平面覆盖整个屏幕
在图像的注解提示上设置格子
图画和注解可以被增减到图像上。
Standard Image post processing:
标准图像后处理:
Multi-Projection Volume Reconstruction (MPVR)
Quick and easy way to generate volumetric images for MR or CT Angiography without threshold data or removing unwanted anatomy
An entire volume is used to generate images in any plane, creating real time frames of reference at the same time.
Multi-Planar Reformation (MPR)
Provides real time assessment of anatomy in off-axis planes. Sagittal, coronal, oblique, and curved planar reformations available.
Other standard analysis features
Curved reformations
Batch reformations
Interactive Vascular Imaging (IVI)
Comparison Mode
Multi-image ROI
3D Surface Rendering
标准图像后处理:
多平面容积重建 (MPVR)
可以在没有启动数据或者去除不需要的解剖面的情况下快速容易的生成MR或者CT血管造影的容积图像
一个完整的容积可以在任意平面生成图像,并且可以生成实时的指导框架
多平面重建功能 (MPR)
提供远离轴平面解剖面的实时评估。可得到矢状位,冠状位,斜位以及曲面的改变。
其他的标准分析特性
曲面变化
批量处理
交互血管成像 (IVI)
对比模式
多图像感兴趣区
三维表面重建。
q ScanTools SILENT MR 3.0T Additional Post-Processing Functionality
q SILENT MR 3.0T 额外的后处理功能
Multi-Projection Volume Reconstruction (MPVR): Provides quick and easy generation of reformations through any 3D MR data sets. FuncTool Performance: FuncTool Performance enables advanced MR-image post-processing using a wide range of sophisticated algorithms, including:
eADC maps
Correlation Coefficients for mapping of motor strip and visual/auditory stimuli
NEI (Negative Enhancement Integral)
MTE (mean time to enhance)
Positive Enhancement Integral
Signal Enhancement Ratio
Maximum Slope Increase
Maximum Difference Function
Difference Function
Diffusion Tensor Post-Processing* (requires Diffusion Tensor option). The Diffusion Tensor imaging package offers basic post processing on the operator’s console such as ADC, diffusion-weighted image and fractional anisotropy. The results can be displayed in any of a variety of user-defined formats, including time intensity curves, parametric color overlays and metabolite ratio maps.
3DCSI Post Processing* (requires PROSE option key. Please note that PROSE is not yet commercially available for 3.0T systems, but that this portion of FuncTool Performance may be used for processing on 1.5T PROSE cases)
多平面容积重建(MPVR)通过采集3D数据可以很轻松快捷的完成3D容积重建。所有的数据处理方法采用独特的算法来完成, 包括:
EADC后处理图
时间相关性后处理
灌注增强的容积积分
灌注增强的平均通过时间
灌注增强的最大通过斜率
最强信号的功能表征值
DTI后处理,神经纤维束显示软件
Filming:
照相:
Image Filming Features
Drag & Drop filming
One button Print Series
One button Print Page
Multi-image formats - 1:1, 2:1, 4:1, 6:1, 9:1, 12:1, 15:1, 16:1, 20:1, 25:1 and 35 mm slide
DICOM 3.0 Basic Grayscale Print Service Class
Image Storage/Retrieval Specifications
Images may be stored and retrieved via Maxoptix Magnetic Optical Drive (MOD) media using DICOM 3.0 format. This allows interchangeability with any other imaging system supporting DICOM 3.0 MOD media.
Off-line retrieval of all image files. Images may be viewed as soon as they are restored from MOD.
Image storage or retrieval times using Maxoptix MOD media are approximately 2 sec per 512 x 512 image.
图像照片:
图像照片特点
拖&拉制图
一键打印序列
一键打印整页
多图像格式 - 1:1, 2:1, 4:1, 6:1, 9:1, 12:1, 15:1, 16:1, 20:1, 25:1 and 35 mm slide
DICOM 3.0 基础的灰阶打印服务
图像储存/调取特征
图像可以通过利用DICOM3.0格式的MOD来储存和恢复。这个就可以和支持DICOM3.0MOD格式的任意一个其他的图像系统进行互换。
所有图像文件的离线调取。图像从MOD中一调取就可以观看。
利用Maxoptix MOD媒介所得到的512X512的图像的储存或恢复时间大约是2秒钟。
Peripheral Sensor
Peripheral gating uses a photopulse sensor that detects the blood flow in the vascular bed. The photopulse waveform represents blood flow, not the electrical activity of the heart. Peak blood flow occurs at the peak of the waveform.
外周传感器
外周门控利用一个可以探测血管分层里的血流的照片脉冲传感器。这个照片脉冲波形显示血流,而不显示发生在波形峰值时的心脏峰值血流电生理活动。
Respiratory Gating and Triggering
Respiratory gating and triggering uses a bellows sensor that detects the motion of the abdominal wall. The respiratory waveform represents the excursion of the abdominal wall throughout the course of inspiration and expiration. The waveform is a pattern of the patient’s breathing.
• Respiratory Gating
• Respiratory Triggering
呼吸门控和触发
呼吸门控和触发是利用探测腹部壁运动的风箱传感器。呼吸波形显示了贯串呼吸的腹壁的运动。波形是显示病人呼吸的一种模式。
• 呼吸门控
• 呼吸触发
Gating Control
• Waveform Display area details all the items in the Waveform
Display and Cardiac Sweep Rate area of the Gating Control window.
• Lead Display area details ECG/PG lead selection and ECG inversion.
• Cardiac Trigger Level area details adjustment of the trigger level for detection of the R-wave, and includes details on Cardiac Trigger Level Annotation and Trigger Volume.
• Gating Reset and R-peak Amplitude areas detail the use of these features.
门控控制
• 波形显示区域标明了门控控制视窗内波形显示和心脏刷新率所有项目的细节。
• 电极导联显示区域标明ECG/PG选择和ECG倒置的细节。
• 心脏触发标准区域为R波的探测标明了触发标准调整的所有细节,同时也包括了心脏触发标准注解和触发容积的细节
• 门控重置和R峰值振幅区域标明了利用这些特性的所有细节
Waveform Display
The cardiac waveform is displayed on the PC monitor. A numeric value, displayed in Beats per Minute (bpm), appears to the left of the waveform display. The speed at which the waveform is displayed can be adjusted by defining the Cardiac Sweep Rate.
The respiratory waveform is displayed on the PC monitor. A numeric value, display in Breaths per Minute (bpm), appears to the left of the waveform display. The sweep rate for the respiratory waveform is 5 mm/sec. This rate cannot be changed.
Select the ECG Histogram to display a graph representing the variation in the patient’s heart rate as compared to the expected time of trigger throughout the data acquisition.
This graph is continually updated automatically as the scan progresses.
Advanced ECG Gating observes both positive slope and the amplitude to detect which component of the QRS complex is the correct trigger (the R-Wave). Advanced ECG Gating contains a stringent test for matching known slope and amplitude during the first 45% of the waveform after a recognized R-wave. The slope is measured during cardiac initialization. It is critical that the patient remain outside of the magnet, and stay still and quiet during cardiac initialization. This test helps reduce false triggering on T-waves and gradient noise.
The ECG Noise Filter helps reduce the effect of gradient noise on the ECG signal. Turning on the ECG Noise Filter results in an increase in the minimum Trigger Delay (set at the Combined Cardiac and Respiratory Gating/Triggering Screen).
Standard CINE Screen
CINE is an optional GRE acquisition that acquires data continuously throughout the cardiac cycle. CINE scans employ a short TR GRE pulse sequence that produces a bright blood and dark myocardium image with fairly high contrast. CINE images are acquired using retrospective gating techniques. CINE is allowed when CINE is selected as the MODE in the Imaging Parameters area. Either GRE or SPGR can be selected at the Pulse Sequence window.
标准电影屏幕
电影是梯度回波序列采集的可选项,它在整个心动周期内连续采集数据。电影扫描利用了一个短的TR梯度回波脉冲序列,生成高对比的高信号血液和低信号心肌图像。电影图像是通过回顾性的门控技术所采集到的。当电影在图像参数区域被作为模式所选择的时候就可以被采集到。梯度回波序列或者是SPGR都可以在脉冲序列窗口里进行选择。
ClariView
ClariView
ClariView is a post-processing feature that filters MR and MRA images to improve signal-to-noise, contrast, and edge sharpness.The ClariView feature filters MR images to improve apparent signal to noise, contrast, and edge sharpness. The ClariView feature filters MR images to make them more aesthetically pleasing. These filters have varying combinations of smoothing and sharpening. ClariView smoothing algorithms remove graininess from high resolution and low signal images. ClariView sharpening algorithms provide edge\enhancement. The MRA-MIP filter smooths the vascular structures without introducing any black lines and provides good vessel delineation. You can apply the MRA algorithm to either the source images or to the MIP images.
ClariView是一种为了提高信噪比,对比度以及边缘清晰度而进行的MR和MRA图像的滤波后处理特性。ClariView处理MR成像来使图像更加美观。这种过滤既有使之平滑的,也有使之锐利的。ClariView平滑的特性去除了高分辨率低信号图像的粗纹。ClariView锐利的特性增强了边缘。MRA-MIP滤波在不引入任何黑线的情况下使得血管结构更加平滑,并且清晰的描绘出血管的结构。我们既可以在MRA的原始图像中也可以在MIP图像中应用。
MIROI
多图像感兴趣区功能
The Multiple Image Region of Interest (MIROI) tool is an analysis software that allows you to graphically analyze signal intensity values within a defined area of interest on numerous images. This tool is useful for graphing a change in contrast enhancement over time through a defined area.
• MIROI Tool Panel
Load Series,Draw ROI,Single and Multi-Voxel ROI Cursor, Cursor ROI,aA Icon,Window/Level Presets,Rotate Icons,Film Composer,Get Protocol/Delete Protocol,Browser,Help Menu,Quit
• Manipulating the Image
Show/Hide,Smooth/No Smooth,Display Normal,Save View,Movie
• Manipulating the Graph
Set X Unit,Set Y Unit,List Values,Histogram,Save View,Create Annotation,Show Deviation
MIROI requires multiple images from a single series with the same scan plane, image center, and pixel size. Once valid images are acquired, MIROI displays the information in a graph that plots the change in signal intensity over time. This graph is called a time-intensity curve. The images and graphs can be saved and printed on film.
• Signal intensity is plotted on the y-axis.
• Time is plotted on the x-axis.
Curves are displayed as the ROIs are defined. Up to twenty curves may be displayed at one time on a single plot. If more than 20 ROIs are identified, only the 20 most recently defined ROIs are displayed and plotted. Total dataset size is a function of available memory and image matrix size. Applications for using MIROI include contrast injection studies to determine the acquisition delay for contrast angios. It can also be used to determine peak flow velocity for vascular studies by finding the correct trigger delay for gated 2D TOF studies.
多图像感兴趣区功能(MIROI)是一种分析工具,它可以在一个需要大量图像的特定区域内用图解方式来分析信号强度的评估。这个工具对于一个特定区域内用图解来表示一个变化对比增强非常有用。
• MIROI工具面板
下载系列,画出ROI,信号和多象素 ROI指示,指针ROI,图标,窗宽/窗位预设,旋转图标,图像设计,获得程序/删除程序,浏览器,帮助菜单,退出
•图像处理
显示/隐藏,平滑/不平滑,常规显示,显示保存,电影
• 图标处理
设置X单元,设置Y单元,价值列表,柱状图,显示保存,注解生成,显示背离
MIROI在同一个扫描平面,图像中心以及象素大小的情况下需要从一个单独系列里得到多图象。一旦采集了有价值的图像,MIROI可以显示图表里的信息,这个图表随着时间的改变会显示信号强度的改变,即时间强度曲线。这些图像和图表可以在胶片上保存和打印。
• 信号强度可以在Y轴上划分
• 时间区域在X轴上划分
就像感兴趣区ROI可以被定义,曲线也可以被显示。在一个单独区间内一次可以最多显示20条曲线。全部的数据设置具备可记忆的功能和图像矩阵尺度。MIROI的应用于对造影增强成像,并以此来决定增强血管的采集延迟。通过带门控的二维时飞法校正触发延迟,它也可以被用来决定血管成像的峰值流量速率。
Three Dimensional (3D) Analysis
三维分析
The software application is designed to generate reconstructed 3D volumes and reformatted cut planes on an MR series. The program allows you to build your own model or use a preset protocol such as MR Angio and MPVR (Multi-Projection Volume Reconstruction).
三维分析
三维分析软件应用程序可以在一个MR系列上生成重建的三维容积和新格式的平面切削。程序可以允许建立你自己的模式或者利用一个现有的预设置协议,诸如磁共振血管和多方位投影容积重建MPVR。
q Interactive Vascular Imaging (IVI)
q 交互式血管成像
This post-processing tool focuses on the creation of vascular projection images. The Vascular Display Package, or Interactive
Vascular Imaging, creates projection images from a 2D stack or 3D volume of Magnetic Resonance Angiography (MRA) images and allows you to view the data from different angles. IVI uses a ray tracing technique called Maximum Intensity Pixel (MIP) to create projection images. IVI allows you to modify the volume of interest to remove competing structures, such as fat, to improve the vascular images. The volume of interest can also be modified by cutting away undesired structures using the scalpel feature. By modifying the volume of interest process, you can remove unwanted structures, such as fat, from the volume of interest and determine if the unwanted structures differ by physical distance or by signal intensity. Determining which method to use to modify the volume of interest is dependent on how the structures differ. The Batch Projection method allows you view the MIP images rotating in a loop, similar to a movie. You can film, archive and view the images directly from Batch Projection.
交互式血管成像IVI
这个后处理工具注重生成血管多方位投影图像。血管显示包或者是交互式血管成像,从二维或三维MRA的容积数据中生成多方位投影图像,并且可以从不同的角度观测数据。M利用一个叫做MIP的光线追踪技术来生成多方位投影图像。IVI可以允许修改感兴趣区的容积,并以此去除竞争性结构信号,例如脂肪等,来提高血管图像质量。感兴趣区容积也可以用解剖刀特性切除不需要的结构来进一步改善。感兴趣区容积的修改可以从中去除不想要的结构,诸如脂肪,并决定那些不需要的结构是通过自然距离还是信号强度的不同来鉴别。依据结构不同的方式来决定用哪一种方法来修改感兴趣区的容积。批量投影的方法可以允许观看循环旋转的MIP图像,类似于电影显示。我们可以直接通过批量投影来照片,存储,及观看图像。 |
|